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Jength 2., which a c'(‘)nstant‘f”
time ¢: - %

v = — W/t = (% 8]

Effective lengtfls were computed for the data of this report,
and revised versions of Eqgs. [2b] and [5b] obtained, =

(r+ 1.2)% = 2./7.9 - [9]
P = (z, — 415)/11.1 [10]

ity. missile would travel in
%

Once again one sees the importance of knowing the proper
form of the wake growth. ¥rom the coefficient of Eq. [10] &
better value of Cp may be calcilated by means of the Leed-
Hromas theory. This value, 1.2, is 209, higher than the true
value. Since K is certainly not any better known than 209,
this is a very encouraging verification of the Lees-Hromas
theory. ‘

s

Summary

1) Experimental determination of the exponential co-
efficient in the growth law for a turbulent wake is very diffi-
cult, if not impossible.

2) 1If use is made of the theoretically predicted value of
this coefficient, the existence of two distinet regions of growth
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(z < 200, z > 200) is shown by the experimental data.

3) Although the Slattery and Clay data indicate a scale
effect for -and 3- in. spheres, the authors’ 1- and 1-in. sphere
data indicate at most a much weaker scale effect.

4) Tt is important to fit the data with the proper algebraic
expression of the theoretical growth law, i.e., 7 = bz + c.

5) If the effect of sphere deceleration is assumed to be de-
scribed by a quasi-steady state transformation; the coefficient
b for the far wake is well predicted by the Lees-Hromas
theory.
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Compressible Free Shear Layer with Finite Initial Thickness

M. RicHARD DENISON* AND Eric Baum’

Electro-Optical Systems Inc., Pasadena, Calif.

The momentum equation was uncoupled from the other conservation equations for the case
of a finite initial profile in a laminar free shear layer. The equation was solved numerically, in
the Crocco coordinate system, using an implicit finite difference method. Profiles of velocity
and shear function were obtained as a function of streamwise distance. The initial profiles as
the flow separates from the rear of the body correspond to the Blasius profile in transformed
coordinates. For large distances downstream, the profiles approach the Chapman distribu-
tion, corresponding to the case of zero initial free shear layer thickness. The effect of these
results on calculations of base pressure and wake angle is discussed. A method for the calcu-
lation of finite chemical kinetic effects on the profiles of temperature and chemical composi-
tion in the free shear layer with finite initial thickness is outlined.

Nomenclature
C = Chapman-Rubesin parameter, see Eq. (7)
F = shear function, see Eq. (8)
Fo = initial shear function
F, = initial shear function at body surface
F* = F/F,
P = pressure
ro = distance from axis of symmetry to body surface or divid-
ing streamline
S = transformed distance parameter, see Eq. (4)
Sy = parameter S evaluated for body
8* = SCF,?
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% = component of velocity along dividing streamline

u* = ufu,

U = u*38*~13

v = component of velocity perpendicular to dividing stream-
line

7 = transformed velocity component, see Eq. (7)

z = distance along dividing streamline from base of body

y = distance normal to dividing streamline

Y = normal distance parameter, see Eq. (3)

n = normal distance parameter for similar solutions, see Eq..
(9)

u = viscosity

¥ = stream function

Subscripts

D = dividing streamline conditions

e = conditions at outer edge of free shear layer

I. Introduction

TIHE length of trail behind a body, defined by observables:
such as electron density and radiation intensity, is de--
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termined by the diffusion and recombination processes in the
wake. Since the wake is very complex from the standpoint of
fluid mechanics, many subdivisions of the wake can be defined.
A crude description consists of the outer wake, the inner wake,
and the base flow. The outer wake contains velocity, tempera-~
ture, and species gradients due to the varied origin and history
of its streamlines. The cooling of this outer wake has been
studied by Feldman.! The inner wake is the viscous region
near the axis downstream of the “neck” of the wake. When
this region is turbulent, it can completely swallow the outer
wake before cooling of the outer wake takes place. This region
has been studied recently by Lees and Hromas? under the
assumption of thermodynamic equilibrium.

The base flow region extends from the base of the body to
the neck of the wake. This region was studied by Chapman?
primarily for the purpose of determining the base pressure be-
cause of its influence on drag. A sketch of this region is
shown in Fig. 1. The layer begins with some finite thickness
due to the upstream flow over the body. The dividing stream-
line separates those streamlines which continue downstream
through the neck of the wake from those which turn back and
recirculate.

Chapman? studied the case in which the initial boundary
layer thickness is zero in order to simplify the mathematics.
It turns out in this case that a similar solution to the equa-
tions of motion is obtained; that is, the flow field can be de-
termined in terms of one space variable which contains both
physical coordinates. The solution of Chapman actually
applies only to that portion of the base flow in which recirculat-
ing mass is being entrained by the shear stresses of the outer
flow. In order to determine the base pressure, Chapman
assumed that the recompression region where the recirculating
flow turns back is small in extent. He then assumed that
the total pressure on the dividing streamline is equal to the
static pressure behind the trailing shock. This assumption
plus the analysis of the inviscid flow outside the mixing region
serves to determine the base pressure. Although there has
been some controversy recently as to the stability of this
model its sucecess in predicting base pressure makes it appear
reasonable.

The purpose of the present investigation is to improve upon
the available base flow calculations in order to obtain more
realistic initial conditions for analyses of the downstream
wake such as that of Lees and Hromas.? The present investi-
gation is of a laminar base flow. Lees and Hromas point out
that for a considerable range of Reynolds numbers and Mach
numbers of interest a laminar base flow with a turbulent inner
wake downstream of the neck is possible. This paper is con-
cerned with the investigation of the influence on the base flow
of two effects which have not heretofore been considered
quantitatively. The body of this paper covers an analysis of
the shear layer flow fleld when an initial (Blasius) velocity
profile exists on the body. An appendix outlines an analysis
of the influence of finite chemical rates in the free shear layer.

II. Conservation Equations

The coordinate system as illustrated in Fig. 1 is distance
along the dividing streamline and normal to it. The distance
7o 18 measured from the centerline for axisymmetric flow.
When this distance is large compared to the thickness of the
mixing layer, the continuity and momentum equations are as
follows:

Continuity
o) 0
= 3 = £) =
5 (purd®) + oy (ovre*) = 0 (1)
Momentum
du ou 0 ou dP
p(“&c“‘“”b@)"b@(”?y)"?x &)

FREE SHEAR LAYER WITH INITIAL THICKNESS 343

PRANDTL -~ MEYER
- EXPANSION FAN

e TRAILING.
/,‘/ - SHOCK
- .
52

HEAT ADDED TO
o~ BASE "VORTEX"
HEAT o
SUBTRACTED
FROM BASE

“VORTEX"

/THROAT

~
~~Z

STAGNATION POINT
ON DIVIDING STREAMLINE
(21d STAGNATION POINT)

BASE STAGNATION POINT
(1 STAGNATION POINT}

LOW VELOCITY FLOW

Fig.1 Base flow region

where &k = 0 for two-dimensional flow, & = 1 for axisymmetric
flow. Transformations like those of Howarth and Levy are
introduced

Y = poure f ! (o/ pe)dy 3
0

z
S = f PellefheToPdx 4)
[}
(measured from point of separation).
The stream function is defined as
OY/Qy = pury )
OY/dx = — porg* (6)

Use of these relations in the momentum equation yields

lbu/uﬁ 7 ou/u. _ o o du/u.\
U, 0S8 u, 0Y oY dY |
dP 1 Pe u \2
a5 pat [7 “<Z> 1 @
where
o/u. = —(O¥/38)y ¢ = pi/pette

which will be assumed constant. The term involving the
direct effect of the pressure gradient in Eq. (7) can be neglected
for hypersonic boundary layers by the arguments of Lcest
and Moore.® For the shear layer the pressure gradient will be
negligible in most of the region anyway. In this way the
momentum equation is completely uncoupled from the energy
and species continuity equations. Hence, it can be solved
separately. The energy and species equations can be solved
later based on the resulting velocity distribution. Finite
kinetics can also be included.

A further transformation to the Crocco coordinate systems
proves convenient for numerical calculations. In order to put
the momentum equation in this form, it is solved for #/x,, dif-
ferentiated with respect to Y, and use is made of continuity
(or the definition of the stream function) to yield

u\ o _ p, OF
u, ] OCS 7 d(u/u.)? ®)

where
F= (0/0Y)(u/u.)

III. Universal Form of Solution

The momentum equation, Eq. (7), also applies to the
boundary layer on the body if S represents an integral measured
from the nose of the body. The value of this integral carried
all the way from the nose to the base of the body will be de-
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noted S;. The velocity distribution at the base of the body
is given in the form of a similar solution for several sets of
boundary conditions. The one of immediate interest is the
axisymmetric or two-dimensional body without blowing, with
the velocity distribution given by the familiar Blasius solution,*
of the form

Y
U = f' = -
” FC)) 7 505 (9)

If the expansion about the corner of the body base is rapid, the
distribution given by Eq. (9) may be distorted by the direct
effect of the pressure gradient on the momentum equation.
The effect of the sharpness of the corner on the solutions of
Eq. (8) should be investigated further.

When the flow does not turn sharply at the point of separa-
tion from the body, the Blasius distribution should still de-
scribe the flow at the start of the free shear layer, and Eq. (8)
can be reduced to a universal form having one set of solutions
applicable to all bodies.

The initial shear distribution, also given by the Blasius
solution, has the form

V208, Fy = f'(n) (10)

Hence, the initial shear profile normalized with respect to the
wall shear is a universal function of the velocity ratio

Fo ') _ s
7, 70 Fo*(u®) (11)
where
u* = u/u,

Then, if the distance coordinate is stretched by defining
S* = CSF,? (12)

the momentum equation becomes

OF* OF*
£ 90 w20
Wasr = T o (13)
The boundary conditions which correspond to those of Chap-
man are

F*0) = F*(1) = 0 S5 >0 (14)

Therefore, with a single universal initial distribution given by
Eq. (11), the differential equation, Eq. (13), should yield a
single solution, as a function of S* and »*. Furthermore, since
the boundary conditions imposed are the same as those of
Chapman, the solution should approach his results for suf-
ficiently large S*.

On the dividing streamline 5/u, = —0¢/08 = 0. Hence,

from Eq. (7)
* JQF*
up* dup = Fp* < > (15)
D

dsS* ou*

Once the solution is obtained, 4* vs Y at a given value of S*
can be found by use of

*
un d %
YF. = f = (16)
u

D*

It is immediately apparent that Eq. (15) cannot be used for
a numerical solution at the origin, because the value of Fp*
is not known initially and, as will be shown, (OF*/0u*)p is
zero at the origin, making Eq. (15) indeterminate. An inde-
pendent method of starting the calculation is necessary.

IV. Starting Profile

An indication of the difficulty in starting the solution is
obtained by looking ahead to Fig. 3 where the solution is
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plotted. The Blasius shear distribution on the body begins
at F* = 1 at u* = 0 and goes to zero at u* = 1. In the free
shear layer the boundary condition is suddenly changed to
F* = 0 at u* = 0. Therefore at S* = 0 the initial distribu-
tion goes vertically upward from zero and then follows the
Blasius distribution from F* = 1. It can be seen that
(dF*/du*) = 0 at w* = 0*. This suggests that a starting
solution for small S* should become asymptotic to F* = 1 at
a small value of u* and go through zero at u™* =

An equation which is good at small values of S* can be
obtained from Eq. (13) by changing the independent variables
from S* and u* to S* and U where

U = u*/(38%)1/2 1n

This transformation is suggested by the solution of Goldstein®
who found, for the wake of a flat plate in incompressible flow,
that initially the velocity grows as z'/3. When the transforma-~
tion is made the momentum-equation becomes

OF* OF*  F*2 e+
* 77 — - .
33 <as*>,, Vo T U aue

F* = F*(U) with the boundary conditions of Eq. (20) satis-
fies the initial conditions. Therefore, Eq. (18) becomes an
ordinary differential equation. The dividing streamline is
found from

(18)

Fp*(dF*/dU)p = Up? (19)
The boundary conditions for Eq. (18) are
U=0, F*x=0 U— o, F¥—>1 (20)
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The boundary condition at infinity is in the boundary layer
sense. For a given value of U when S* is small u* will be
small. Eq. (18) with these boundary conditions was solved
numerically by iteration assuming various values of the slope
at the origin until F* approached unity at large U. The
solution is plotted in Fig. 2. The dividing streamline was
found by use of Eq. (19).

V. Numerical Method

An attempt was made to use the method of Dorodnitsyn?
to compute the profile. Because of the shape of the shear
profile at small $* it was found, however, that a very high
degree polynomial was required in order to fit the initial

*
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Fig. 8 Body geometry for ideal, constant v, gas ealcula-
tions

distribution. This led to difficult matrix inversion problems
and the method was abandoned in favor of a finite difference
method.

An implicit finite difference method such as that described
in Ref. 8 was used. In the implicit method, the stability of
this type of numerical integration is improved by using S*
centered finite difference approximations for derivatives with
respect to u*. The approximations used are

OF*/08* = [F*; 11 — F*:,]/As* @1)
OF*/ou* = [F*i1,in + Fopy —
F¥iqim — F*i;]/44u™  (22)
OWF*/ou*? = [F*i 1,5 + F¥ipi — 2F%, 4 —
2F% ;4 F*i i+ F*i51/2(Au®)? (23)
where
¢ = #* index
= S*index
Eq. (13) becomes
F* i + JEHF* i + F¥ip i = H(@j)  (24)
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H@j) = _Fi~1,i+2[1 - j]F*i,: — F* .

Boundary conditions are
F*£:1 = F*i=N+l =0

N = 1/Au* (26)

This equation can be written for7 = 2... N, giving N — 1
coupled equations in N — 1 unknowns. The equations are
evaluated by using

F* = [F*; + F*,;.)/2 in J(i,5) and H(,j) (27)

The solution of the equations is repeated until the next mean
value of F* agrees within a prescribed tolerance with the
previous value. The N — 1 equations are solved using the
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equivalent of Gaussian elimination.® The calculations were
programmed for solution on an IBM 1620 computer, using
160 meshpoints in u*.

VI. Results

The change of the shear function (vs velocity) profile with
distance from the separation point at the base of the body is
shown in Fig. 3. The maximum value of the shear function is
reduced by an order of magnitude by the time S* becomes 4.
Asis to be expected, with increasing S*, the profile approaches
the similar profile which assumes zero initial free shear layer
thickness. This can be shown more clearly by plotting the
similar shear function f”(y) or (28*)Y2F* vs u* (Fig. 4).
The similar profile is that labeled S* = «. It is clear from
this figure that if the distance, S*, from the separation point
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at the base of a hypersonic body to the stagnation point at the
rear of the recirculation region is smaller than that given by a
value of the order of unity, the use of the similar profile is no
longer justified. .

The velocity at the dividing streamline is given as a function
of the reduced distance §* in Fig. 5.

The normal distance parameter YF, vs velocity profile is
given as g function of 8* in Fig. 6.

The approach of this profile to the similar velocity profile
can'be seen by plotting the similar normal distance parameter
nor YF,/(28%)12 vs velocity (Fig. 7).

VII. Wake Angle and Base Pressure Calculations

In order to demonstrate the effect of these results on wake
angle and base pressure calculations, a series of ealeulations
was performed using an ideal, constant v, gas. While the
model is realistic at high Mach numbers only for small angle
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cones and wedges, the calculations were carried out to M = 20
for larger angles in order to illustrate the trend of behavior.
A sketch of the body is shown in Fig. 8. Calculations were
performed for both wedges and cones. The inviscid flow, just
outside the boundary layer, was assumed to be described by a
bow shock (oblique shock for a wedge, conical for a cone), a
Prandtl-Meyer expansion from region 2 to region 3, and be-
tween regions 3 and 4, either an isentropic compression or an
oblique trailing shock. These two assumptions as to the nature
of the compression between regions 3 and 4 are believed to
bracket the actual behavior. The inviscid flow equations give
the pressure behind the trailing shock as a function of 8, the
wakeangle. A second set of equations which also gives Psas a
function of 8 is obtained from the assumption that the re-
compression region at the rear of the recirculation is small in
extent and the total pressure on the dividing streamline is
recovered at the rear stagnation point and is equal to Pi.
These equations are

Py _ =0, “_D>2_Ti]v/<7—1>
Pg - [1 + 2 :W;i U TD (28)

T T. U -1
BB D) ()

Uz
up_ (r=1 g, (@)
Us 2 Us

where the subscript D denotes properties on the dividing
streamline, ¢ denotes properties in the core of the recirculating
region, and 3 denotes the inviseid flow just outside the free
shear layer; up/us can be obtained from Fig. 5 if 8* is known.
For a wedge or cone, ¢csF,2 = (0.332)2(CS/C,S,). ForC = O},
this becomes, from the definition of S,

% _ PsUsps sina

pauaps SIS

The value of 8 for which the value of P4 calculated by each of
the two methods is the same is the wake angle. The results
of these calculations are given in Figs. 9-14. Only results
assuming isentropic recompression are shown, since the dif-
ference between these curves and those for oblique shock re-
compression is appreciable only at low Mach numbers.

The sensitivity of these results to the value of the tem-
perature of the core of the recirculating region is immediately
apparent. The two extremes shown on the graphs correspond
to the freestream stagnation temperature (hot) and free-
stream temperature (cold).

(0.332)? (29)
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Fig. 16 Experimental pressure ratios, P;/P,

Lehnert and Schermerhorn? experimentally investigated the
base pressure and wake angle of 10° half angle cones with no
heat transfer and correlated them with the Reynolds number
based on boundary layer momentum thickness. The free-
stream Mach number was sufficiently small (2.75) that a
constant ¥ = 1.4 approximation is valid. They also investi-
gated spherical nosed cones having the same local Mach
number on the surface at the downstream end of the cone,
and found that the base pressure and wake angle of these
models correlated well with those of the sharp cones. Their
results are given in Figs. 15 and 16. The values of the wake
angle and base pressure ratio calculated using the value of
up/us given by Fig. 5 and those caleulated using the limit-
ing value of up/u; (0.587) are also shown in these figures.

Since the caleulations are based on a laminar flow model, the
measured data should approach the calculated values with
decreasing Reg. The calculated values of pressure ratio and
wake angle seem to agree well with the data.

VIII. Conclusions

The conversion of a Blasius profile to & Chapman distribu-
tion in the free shear layer has been successfully demon-
strated. The range of validity of the Chapman profile is de-
termined by means of the parameter S*. If S* is less than
the order of unity, the calculations presented herein should be
used to determine dividing streamline velocity, base pressure,
wake angle, trailing shock strength, and throat size. Further
investigations are required in order to determine the implica-
tions of these results on the downstream wake.

It is interesting to note that S* is independent of Reynolds
number and depends primarily on body shape and Mach
number. This means that the base pressure, wake angle, and
dividing streamline velocity near the neck should be inde-
pendent of Reynolds number. However, the thickness of the
free shear layer does depend upon Reynolds number. It
would appear, therefore, that as long as the base of the body
is large compared to the thickness of the shear layer the
Reynolds number independence should hold for laminar flow.
When the shear layer is thick it probably cannot be un-
coupled from the internal recirculating region as it was in this
paper.

Calculations presented in this paper have shown the
sensitivity of the results of base flow calculations to the value
of the temperature of the core of the recirculation region. In
addition to the effect of the free shear layer inside boundary
conditions on calculations of gross base flow properties such
as wake angle and base pressure ratio, these conditions are
also needed to change the results presented in this paper from
transformed coordinates to physical coordinates. In general,
in order to make this change, it is necessary to solve the
energy and species conservation equations, and the proper
choice of inside boundary conditions for these equations is
open to question and should be investigated further.
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The mathematical techniques used in this investigation
appeared to work well and the extension of these calculations
to the case in which there is blowing on the body surface—
e.g., due to ablation—appears to be straightforward. In this
case, the profiles of Emmons and Leigh'® would be substituted
for the Blasius profile.

Appendix: Free Shear Layer with Finite
Chemical Rates

In order to change the solution of the momentum equation
from reduced coordinates to physical coordinates, it is neces-
sary, in general, to solve the energy and species conservation
equations. These equations can be written
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species conservation
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where
K; = mass fraction of species ¢

W, = mass generation rate of species ¢

Here it has been assumed that diffusion is due to gradients
in species concentration only and that all diffusion coefficients
are equal.
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where

The assumption is now made that Le = Pr = 1 and the same
transformations are made as were used for the momentum
equation, resulting in the set of equations
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If the initial conditions are satisfied, the energy equation is
satisfied by

hS = hsz + U (hse - h:_c) energy

where h,, is the enthalpy in the recirculation region core, 4,, is
the enthalpy in the inviscid region just outside the free shear
layer. These equations, along with the ideal gas equation and
the rate ‘equations making up W;, permit the calculation of
composition, temperature, density, and velocity profiles.
The mathematical techniques used for the solution of the
momentum equation should work equally well for the solu-
tion of the species conservation equations. There is some
question as to the proper inner boundary conditions for these
equations. In the case of pure air, it appears to be reasonable
to assume that, since the velocity in the core of the recircula-
tion region is small, the composition has time to reach equi-
librium. However, the proper inner boundary conditions for
contaminant species, such as one would get from ablation,

“are not known, and further study of this question is needed.
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